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Abstract

Several mechanisms were used in determination of the development of the male or female of vertebrates. The genes for deter-
mination of sequential hermaphrodite sex are unknown. Here, we reported cloning, alternative splicing, and expression patterns of
the CYPI7 gene of the rice field eel, a teleost fish with a characteristic of nature sex reversal. The CYP17 gene of the rice field eel was
clustered into the CYP17 gene group of all the other vertebrates, especially into the fish subgroup. Four isoforms of the CYPI7 were
generated in gonads by alternative splicing and polyadenylation. Alternative splicing events of all these isoforms occurred in 3’
regions, which encoded three different sizes (517, 512, and 159 aa) of proteins. RT-PCR results indicate specific expression in gonads
of these isoforms. Northern blot analysis shows that expression patterns of the CYP17 (dominantly expressed in testis, less in ovary,
and the least in ovotestis) are consistent with the sex reversal process of the rice field eel. In situ hybridization further shows its
specific expression in germinal lamellae, the gonadal epithelium of the gonads. These findings indicate that CYPI7 is differentially
regulated in a sex- and developmentally specific manner, suggesting that the CYPI7 potentially has important roles in gonad

differentiation during sex reversal of the rice field eel.
© 2003 Elsevier Science (USA). All rights reserved.
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Morphologically distinct males and females are ob-
served throughout the animal kingdom. A variety of
mechanisms are used in determination/differentiation of
two sexes, including X- and Y-chromosome hetero-
gametes in male mammals, Z- and W-chromosome
heterogametes in female birds, and a temperature de-
pendent sex determination in reptiles. Some species are
hermaphrodite, while others can belong sequentially
first to one sex and then to the other. Molecular and
evolutionary mechanisms for such a variety of strategies
are still not completely understood, although several
genes involved in sexual development are identified, in-
cluding SRY, SOX9, SFiI, DAXI1, WTI, and DMRTI
[1-11]. The SRY is a major testis-determining gene and
only conserved in mammals [7,9]. The SOX9 exists in
vertebrates for both sex differentiation and chondro-
genesis [4,6,11]. DMRTI is the only one characterized to
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date containing a DM domain that is conserved and
functionally related among phyla, at least in Drosophila
(doublesex), Caenorhabditis elegans (mab-3), and verte-
brates (DMRTI1/DMY) [8,12-14]. However, the cascade
of sex determination/differentiation in vertebrates is still
waiting for answer. Studies on alternative sex differen-
tiation systems for comparison and compensation are
helpful in understanding the evolution of sexual deve-
lopment in vertebrates.

The developing testis produces testosterone which is
an important hormone in male sex differentiation, re-
sponsible for the stabilization and differentiation of the
Wolffian ducts into seminal vesicles, epididymides, and
vasa deferens. Testosterone is synthesized from cho-
lesterol in a series of steps requiring several enzymes,
including P450c17 (CYP17, or 17a-hydroxylase/c17,20-
lyase). The gene CYPI7 has been identified in several
species, including mammals, frogs, chicken, Songbird,
rainbow trout, spiny dogfish shark, and Japanese eel
[15-23]. The CYPI7 is mainly expressed in both gonads
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and adrenals, consistent with a role in gonadal steroi-
dogensis.

The rice field eel, Monopterus albus, taxonomically
belongs to teleosts, the family Synbranchidae of the
order Synbranchiformes (Neoteleostei, Teleostei, and
Vertebrata), and it is also the only representative species
of the group of Synbranchidae in China. This fresh-
water fish is not only an economically important species
of southeast Asia for food production, but also a good
model for comparative genomic studies of distantly re-
lated vertebrate processes, such as sexual development,
because of its special evolutionary status, relatively
small genome size, and natural sex reversal from female
via intersex into male during its life [24]. Several genes
potentially involving in sexual development in the rice
field eel have been identified in our laboratory, including
two Sox9 [25], Sox17 [26], and Dmrtl genes (manuscript
submitted). To get further insight into the evolutionary
and developmental mechanisms of sexual differentiation
in this special species, we report the cloning of P450c17
(CYP17) and first finding of its alternative splicing in
gonads, as well as its expression pattern during sex
transformation.

Materials and methods

Animals. The rice field eels were obtained from markets in the
Wuhan area in China. The sexes were confirmed by microscopic
analysis of their gonad sections.

RACE analysis and cloning of P450c17. SMART cDNAs were re-
verse transcribed from the RNAs of gonads of the rice field eel, using
the SMART cDNA library construction kit (Clontech). 5 RACE was
performed using common SMARTIII primer, 5 AAGCAGTGGTAT
CAACGCAGAGTGGCCATTACGGCCGGG 73, and P450 domain
primer, 5 TCTTTCCCGTTTCTGGTC 3’ designed based on the
partial sequence we cloned. We performed 3’ RACE using common
CDSIII primer 5 ATTCTAGAGGCCGAGGCGGCCGACATG-
d(T);)N_ N3 (N=A,G,C,orT; N_; =A, G, or C) and P450 domain
primer, 5 CAAAGTCATCATTGTCAACCAGCAC3. After the

PCR, nested PCRs were done using the same 5’ primer SMARTIII and
nested primer 5 ATATTTGCTGGAAGGCCAAGAACTG3'. PCR
cycling conditions were: 35 cycles, with 30's, 94 °C; 405, 64 °C or 56 °C,
120s, 72°C, in a 20l reaction mix containing 10 mM Tris-HCI,
pH 8.3, 1.5mM MgCl,, 50mM KCI, 200uM dNTP, 0.2uM each
primer, and 1 U Taq DNA polymerase. Full lengths of cDNAs alter-
natively spliced were verified by following RT-PCR and sequencing
analysis.

RT-PCR. Reverse transcription PCR was used to amplify indi-
vidual isoforms of the CYPI7 gene from different tissues of the rice
field eel. Reverse transcription was performed using M-MLV RT
system (Promega, USA) with 0.5 pg of oligo(dT);, 15 and 2 pg of total
RNA in a 25 pl reaction. PCR were performed in a 20 pl reaction mix
containing 10 mM Tris-HCI, pH 8.3, 1.5mM MgCl,, 50mM KClI,
200 pM dNTP, 0.2 uM each primer, 1 U Tag DNA polymerase and 1 pl
first-strand cDNA products. Amplification conditions were: 94°C,
40s; 62°C (CYP17a), or 51°C (CYPI7b), or 48°C (CYPI7c), 40s;
72°C, 100s for 35 cycles, and 94 °C, 30s; 58 °C, 405s; 72°C, 40's for 20
cycles for f-actin. Primers are as the following:

CYPI17a, 5 CCGGAATTCATGGATATAACTTGGTTTCTA 3

and 5 CCTCTCGAGTTACGCCTGGCACTTGTTT 3;

CYPI17b, 5 CCGGAATTCATGGATATAACTTGGTTTCTA 3

and 5 CCTCTCGAGTTATCCAGGATGACAAAG 3

CYPI17¢, 5 CCGGAATTCATGGATATAACTTGGTTTCTA 3

and 5 CCTCTCGAGCTAGACAGGAGTGTACTTAC 3’; and

p-actin, ¥ TCCCTGTATGCCTCTGGT 3’ and ¥ ATGTCACGC

ACGATCTCA 3'.

Sequence and phylogenetic analysis. All CYP17 DNA and protein
sequences from all species were aligned using Vector NT and analyzed
by BLAST of GenBank online. A phylogenetic tree was constructed
using Neighbor-joining method (Clustal X, 1000 runs) and viewed with
TREE-view 1.6.6.

Southern and Northern blotting hybridization. Genomic DNAs were
extracted from the blood of the rice field eel according to routine
protocol, digested with EcoRI, electrophoresed in 0.8% agarose gel,
and blotted onto a nitrocellulose filter. The filters were probed with the
[0-**P]dCTP-labeled CYPI17a2 cDNA (1.6kb including the conserved
P450 domain) and autographed. Northern blotting was performed
according to routine protocol, except that hybridization at 42 °C was
performed in ULTRAhyb solution (Ambion) with [o-**P]dCTP-la-
beled CYPI17a2 (1.6kb including the conserved P450 domain) cDNA
as a probe.

In situ hydridization analysis. For in situ hybridization to gonadal
sections, antisense and sense RNA probes were prepared separately
from a region including P450 domain of CYPI7a2 (1.6 kb) of the rice
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Fig. 1. Diagram illustrating the isoforms of the CYP17 gene of the rice field eel generated by alternative splicing and polyadenylation. The CYPI17 is
transcribed to form different isoforms of mRNAs: CYPI7al, CYP17a2, CYP17b, and CYPI7¢, which may code P450c17 proteins with different
amino acids (numbers above each line), respectively. P450 domains are indicated by shaded boxes. Sequences from aa 1-501 or 502 are common
among the transcripts except of the isoform CYPI7c. Alternatively spliced regions in 3’ region are showed by different colors. The numbers in the end
under the lines indicate nucleotide numbers of these cDNAs. The numbers with arrowheads indicate the different amino acids compared with
CYPI7al. GenBank Accession Nos. are: AY224681-AY224684 for CYPI7al-CYPI7c.
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Fig. 2. Alignment of amino acid sequences of the CYPI7 genes from the rice field eel, ape (monkey) (AAG10599), buffalo (AAG02227), cat
(AAG02226), channel catfish (O73853), chicken (P12394), pig (S22339), fathead minnows (CAC38768), frog (AAG42003), goat (AAF65823), golden
hamster (P70687), horse (BAA06350), human (AAA52140), medaka (P70085), mouse (AAL12229), guinea pig (Q64410), rainbow trout (P30437),
Rana (057525), rat (NP036885), spiny dogfish (Q92113), and Japanese eel sequence from [18].

field eel and labeled with digoxigenin-UTP, using SP6 or T7 RNA were immediately hybridized (42°C) and hybridization signals were
polymerase separately (SP6 for production of sense probe, T7 for detected by NBT/BCIP system according to the manufacturer’s
antisense probe). Gonads tissues were cryosectioned and the sections instructions (Boehringer).
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Results

The CYPI7 is alternatively spliced in gonads of the rice
field eel

In an attempt to isolate the CYPI17 gene from gonads
of the rice field eel to further understand molecular
mechanisms involved in sex reversal, we first used a 5
and 3’ RACE analysis approach. While the 5 RACE
showed one band after PCR and gel running, multiple
bands were observed in 3’ RACE and nested PCR. All
these bands were cloned into the vector for sequencing.
After we obtained both 5 and 3’ half regions of CYPI17
sequence, which overlap in the P450 domain region, full
length of the CYPI7 sequence was amplified by PCR
based on the sequence information of the 5’ and 3’ ends
of this gene. Interestingly, four 3’ regions of different
CYPI7 transcripts were obtained. After sequencing
analysis confirmation, three of them (CPYI7al,
CPYI17b, and CPYI17c) were alternatively spliced forms
and one transcript (CPY17a2) was generated by alter-
native polyadenylation. These alternative transcripts
were further confirmed by PCR amplification and se-
quencing of full length of their cDNAs, respectively.
These isoforms may encode different lengths (517, 512,
and 159 aa) of proteins.

The 5 region and P450 domain are common and
alternative splicing sites occurred only in the 3’ region
(Fig. 1). CYPI7c¢ was truncated in the P450 domain as
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Fig. 3. Phylogenetic tree connecting all other CYP17 proteins of ver-
tebrates. Neighbor-joining method was used to construct this tree
(1000 runs). The CYP17 tree consists their taxonomy. GenBank ac-
cession numbers are the same as in Figs. 1 and 2.
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Fig. 4. Southern blot of genomic DNA from blood cells of both male
and female rice field eels after hybridization with [a-3*P]dCTP-labeled
CYP17a cDNA as a probe.

alternative splicing. The highest level of conservation
was within the P450 domain of the proteins, especially in
the 5 region of the domain, when compared with those
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Fig. 5. RT-PCR and Northern blot analysis of the expression of the
rice field eel CYPI17. (A) RT-PCR of the CYPI7 of the rice field eel
shows their expression in three kinds of gonads. There is no expression
in other tissues besides a faint band observed in brain for the CYP/7c.
RT-PCR with f-actin primers (bottom panel) was used as a control. A
negative control with water was also included in each experiment. RT-
PCRs were done repeatedly twice in each tissue for confirmation. (B)
Northern blot analysis of the CYPI7 expression in testis, ovotestis, and
ovary of the rice field eel. The CYPI7 expression is dominant in testis,
less dominant in ovary, but of low expression in ovotestis of intersex.

18S and 28S rRNA bands are shown at the bottom as RNA loading
control.




H. Yu et al. | Biochemical and Biophysical Research Communications 307 (2003) 165-171 169

antisense sense

N 0

8.G|

- Ovary

. ' Ovotestis

Fig. 6. Expression analysis of CYP/7 of the rice field eel by in situ hybridization to gonad sections of female, intersex, and male rice field eel. (A), (D),
and (G), antisense probed for CYPI7 shows expression of these transcripts in gonadal lamellae or epithelium (arrowheads) of female, intersex, and
male, respectively. Sense probing as control (B), (E), and (H) and H.E. staining (C), (F), and (I) in the gonad samples of the three sexes are shown on
the right panel. O, ova; Odv, developing ova; T, seminiferous tubules; and Odg, degenerating ova.

of mammals, amphibians, fishes, and birds (Fig. 2).
These transcripts of CYPI7 of the rice field eel are
clustered into the CYPI17 gene group of all the other
vertebrates, especially into the fish subgroup (Fig. 3). In
the genome of the rice field eel, an identical single band
(about 6.5kb) was observed in both male and female
DNAs, when the CYPI7 as a probe to hybridize the
genomic DNAs digested with enzyme EcoRI (Fig. 4).

CYPI17 is specifically expressed in gonads and dominantly
in the testis

RT-PCR was carried out on gonads of female, in-
tersex, and male and other adult tissues to analyze in-
dividual transcript expression of the CYPI7 during
gonadal transformation from female via intersex to male
of the rice field eel. All these isoforms were specifically
expressed in the three kinds of gonads (Fig. 5A), but a
very faint band was observed in brain. Northern blot
analysis was used to investigate differences in expression
among the three forms of gonads (Fig. 5B). Dominant
expression of the 3.3kb form (CYPI17al) was observed
in testis, less in ovary, and at low levels in ovotestis, and
another band of 1.7kb (CYPI17b) was also observed. A
very faint band was detected between the bands of 1.7

and 3.3kb (CYP17a2), while CYPI7c was not detected
by Northern blot analysis, but RT-PCR shows its ex-
pression, suggesting that it is the lowest expressed iso-
form. These data show that the four isoforms have
different amounts of expression in the transcriptional
level.

The CYPI17 was expressed in the gonadal lamellae

In order to gain insight into the role of the CYPI7
gene in sex differentiation in this species, we analyzed the
gene expression patterns in the three forms of gonads by
in situ hybridization to gonad sections (Fig. 6). In all the
three sexes, CYPI7 expressions were restricted to the
gonadal lamellae with bipotential capacity to form tes-
tis, ovotestis, and ovary, and there was no expression in
the developing germ cells.

Discussion

Although alternative splicing is known to increase
diversity of expression mRNA transcripts, functional
significance for the vast majority of alternative splicing
events is unknown. We report here for the first time that
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the CYPI7 gene of the rice field eel is alternatively
spliced in gonads. Alternative splicing events of genes
involved in sexual development have been observed in a
few occasions. The Drosophila Dsx gene controls so-
matic sexual differentiation by producing alternatively
spliced mRNAs with different 3’ regions encoding re-
lated sex-specific protein DSX™ in males and DSX' in
females [3]. Some other genes are also alternatively
spliced and play a crucial role in sexual development in
mammals, for example WTI [2,5]. Recent studies have
shown that the SRY and SOX factors play a role in pre-
mRNA splicing in mammalian cells [27]. Moreover, our
recent studies have also shown that the DMRTI is al-
ternatively spliced in gonads of a number of vertebrate
species (manuscript submitted). Thus, it seems that
regulation at the transcriptional level, especially by al-
ternative splicing, is an important mechanism governing
the sex determination/differentiation cascade. Although
the CYPI7 genes of several vertebrates (including
mammals, frogs, chicken, Songbird, rainbow trout,
spiny dogfish shark, and Japanese eel) have been iden-
tified, alternative splicing events of these genes have not
been reported. The identification of alternative splicing
of CYPI7 gene in the rice field eel and their specific
expression patterns in sexual development will help in
understanding sexual differentiation of this species.

Sex transformation in the rice field eel occurs natu-
rally during its life from female, via intersex, to male.
During this process, which is genetically determined, the
ovary will gradually transform into ovotestis, and then
become a testis. The expression patterns of the CYPI7
(dominantly expressed in testis, less in ovary, and the
least in ovotestis) are consistent with the sex reversal
process of the rice field eel. Moreover, the expression of
the gene is restricted to a key region of sex differentia-
tion, the germinal lamellae (the gonadal epithelium),
from where different germ cells will differentiate. Mouse
CYP17 expression begins to appear in the genital ridge
at E11.5, just after Sry and Dmrtl, is abundant at E18.5,
and is also expressed in Leydig cells of testis and theca
cell of ovary [28]. While the Sry is a key testis-deter-
mining factor in mammals [7], and Dmrtl/DMY is a
prime candidate for sex-determining gene in some fish
species, such as the medaka [12,13], we reason that the
CYPI17 may potentially have an important role in gonad
differentiation of some vertebrate species with sex
transformation characteristic, such as the rice field eel.
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